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Abstract

In this work, some new special traveling wave solutions of the convective
Fisher equation, the time-delayed Burgers–Fisher equation, the Burgers–
Fisher equation and a nonlinear dispersive–dissipative equation (Kakutani
and Kawahara 1970 J. Phys. Soc. Japan 29 1068) are obtained through the
factorization technique. All of them share the same type of factorization
scheme, which reduces the original equation to a Riccati equation of the
same kind, whose general solution is given in terms of Bessel and Neumann
functions. In addition, some novel particular solutions of the nonlinear
dispersive–dissipative equation are provided.

PACS numbers: 02.30.Jr, 02.90.+p

1. Introduction

The search for exact solutions of nonlinear differential equations is an active field of research
because they describe many different processes in several branches of science such as physics,
biology and chemistry. Many methods have been developed to find analytical solutions of
nonlinear ordinary differential equations (ODEs) and nonlinear partial differential equations
(PDEs). Some of them are the truncation procedure in Painlevé analysis [1], the Hirota bilinear
method [2], the tanh function method [3, 4], the Jacobi elliptic function method [5] and the
Prelle–Singer method [6, 7]. The factorization method is a well-known technique used to
find exact solutions of linear second-order ODEs in an algebraic manner [8]. In recent times,
the factorization technique has been applied to find exact solutions of nonlinear ODEs and
nonlinear PDEs in the context of traveling waves [9–14].

In this paper, some special traveling wave solutions of the following important nonlinear
PDEs are obtained through the extended factorization technique [13]: the convective Fisher
equation, the time-delayed Burgers–Fisher equation, the Burgers–Fisher equation and the
nonlinear dispersive–dissipative equation as studied by Kakutani and Kawahara [15]. All
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of them are expressed as ODEs if the transformation to the traveling variable z = x − vt

is performed, and they share the same type of factorization scheme. This scheme is briefly
described in the following.

Let us consider the nonlinear second-order ODE

ü + g(u)u̇ + F(u) = 0, (1)

where the dot means the derivative D = d
dz

and g(u) and F(u) are arbitrary functions of u.
Equation (1) can be factorized [10, 11] in the following way:

[D − f2(u)][D − f1(u)]u = 0, (2)

under the conditions

f1 + f2 +
df1

du
u = −g(u), (3)

f1f2u = F(u). (4)

Then, a particular solution of the factorized equation (2) is obtained through the compatible
first-order ODE

u̇ − f1(u)u = 0. (5)

Let us consider now the scheme proposed by Wang and Li in [13] for the extended
factorization technique. Assuming [D − f1(u)]u = �(z) yields the following coupled ODEs
for equation (2):

�̇ − f2(u)� = 0, (6)

u̇ − f1(u)u = �(z), (7)

which can be rewritten as

u̇ = f1(u)u + exp

(∫
f2(u) dz

)
. (8)

If one is able to solve equation (8) and obtain all its solutions, then all single traveling wave
solutions of equation (2) will be derived.

Let the factorizing function f2 be a constant, f2 = a2 ≡ const., then the following coupled
ODEs are obtained:

�̇ − a2� = 0, (9)

u̇ = a−1
2 F(u) + �(z). (10)

Equation (9) is a homogenous linear first-order ODE with the solution

�(z) = c1 ea2z, (11)

where c1 is an integration constant. Therefore, the system (9) and (10) can be rewritten in the
form

u̇ = a−1
2 F(u) + c1 ea2z, (12)

whose general solution is also the solution of the factorized equation (2) when f2 = a2.
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2. The convective Fisher equation

The convective Fisher equation studied by Schönborn et al [16] is given as

ut = 1
2uxx − μuux + u(1 − u). (13)

The positive parameter μ serves to tune the relative strength of convection. As pointed by
Reyes and Rosu [17], the convective Fisher equation was used by Walsh et al [18] in 1995
to simulate the population mobility according to spatial gradients in the food supply. Other
applications could be in flame propagation when convection is taken into account and in
branching Brownian motion under some spatial bias gradients.

If the transformation to the traveling variable z = x − vt in equation (13) is performed,
then we get

ü + 2(v − μu)u̇ + 2u(1 − u) = 0. (14)

It can be easily shown that if the factorizing functions f1(u) = −μ(1−u) and f2 = −2/μ

are chosen, then equation (14) admits the factorization[
D +

2

μ

]
[D + μ(1 − u)]u = 0. (15)

The velocity of the traveling wave is obtained by comparing both sides of equation (3) once
the factorizing functions f1 and f2 are defined, giving as result v = μ/2 + μ−1 [10]. The
substitution of f1 and f2 into equation (12) leads to the following Riccati equation:

u̇ = μu2 − μu + c1 e−2z/μ, (16)

whose general solution is given in terms of Bessel Jn and Neumann Nn functions,

u = −
√

c1

μ
e−z/μ

J
1− μ2

2
(ξ(z)) + c2N1− μ2

2
(ξ(z))

J− μ2

2
(ξ(z)) + c2N− μ2

2
(ξ(z))

, (17)

where ξ(z) = √
c1μ

3/2 e−z/μ and c2 is an integration constant. The exact solution (17) is also
a special solution of the convective Fisher equation (13).

The Neumann Nn function is singular if the argument is zero. Therefore, we can set
c2 = 0 in equation (17) and consider only the quotient of Bessel Jn functions to obtain

u = −
√

c1

μ
e−z/μ

J
1− μ2

2
(ξ(z))

J− μ2

2
(ξ(z))

. (18)

Obviously, the order of the Bessel functions will depend on the specific value of the parameter
μ. They can be represented in the following series expressions [19]:

Jn(ξ) =
∞∑

s=0

(−1)s

s!(n + s)!

(
ξ

2

)n+2s

(19)

and

J−n(ξ) =
∞∑

s=0

(−1)s

s!(s − n)!

(
ξ

2

)2s−n

, (20)

for integer n. Equations (19) and (20) may be used with n replaced by ν to define Jν(ξ) and
J−ν(ξ) for non-integer ν.

The asymptotic limit of the Bessel function Jn(ξ(z)) is given as limz→∞ Jn(ξ(z)) =
limξ→0 Jn(ξ). For small arguments ξ , one obtains Jn → 1

�(n+1)

(
ξ

2

)n
, for n > 0. A similar
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Figure 1. Plot of solution (17) for μ = 3.5, c1 = 2 and c2 = 0, within the interval zε(−2, 4.5).
The solution goes to zero as z → ∞.
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Figure 2. Plot of solution (17) within zε(0, 8.5). Parameter values as in figure 1.

approach starting from equation (20) for the case J−n could be obtained. Therefore, the
asymptotic behavior of solution (18) as z → ∞ will be given by

u(∞) = lim
z→∞ −

√
c1

μ
e−z/μ

J
1− μ2

2
(
√

c1μ
3/2 e−z/μ)

J− μ2

2
(
√

c1μ3/2 e−z/μ)
. (21)

Plots of solution (17) are given in figures 1 and 2. As we can see, the solution breaks
down and blows up for some finite values of z. This class of blow-up/break-down solutions
have been found and related to the breaking wave phenomenon in nonlinear wave equations
[20–23].

Some particular solutions of the convective Fisher equation can be obtained from the
Riccati equation (16). If we set c1 = 0, then we get

u̇ = μu2 − μu, (22)

whose integration provides the following Reyes–Rosu (RR) solution [17]:

uλ = [1 ± eμ(z−z0)]−1 +
e−μ(z−z0)

[e−μ(z−z0) ± 1][λ(e−μ(z−z0) ± 1) − 1]
, (23)

where z0 is an integration constant and uλ represents a one-parameter family of kink-type
particular solutions of equation (13).
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3. The time-delayed Burgers–Fisher equation

The Burgers–Fisher equation [14, 24, 25]

ut = uxx − puux + qu(1 − u) (24)

describes the interaction between reaction mechanisms, convection effects and diffusion
transports. This description is modified if memory effects in diffusive processes are taken into
account.

The time-delayed Burgers–Fisher equation [14, 25], which is a reaction–diffusion–
convection equation with finite memory transport, is given by

τutt +

(
1 − τ

df

du

)
ut = uxx − puux + f (u), f (u) = qu(1 − u), (25)

where p and q are real constant parameters, and τ represents the delay time. The time-delayed
Burgers–Fisher equation is important in the context of chemical kinetics, mathematical biology
and turbulence.

The transformation to the traveling variable z = x − vt in equation (25) yields

ü +
1

1 − v2τ
[v(1 − τq) + (2vτq − p)u]u̇ +

q

1 − v2τ
u(1 − u) = 0. (26)

If we choose the factorizing functions f1 = a1
q

1−v2τ
(1 − u) and f2 = a−1

1 , where a1 is an

arbitrary constant, then we get a1 = vτ − p

2q
and the velocity of the traveling wave v = p2+4q

2p(1+qτ)

from equation (3). Equation (26) admits the factorization(
D − 2q

2vτq − p

) (
D − (vτq − p/2)

1 − u

1 − v2τ

)
u = 0. (27)

According to equation (12) we obtain the following Riccati equation:

u̇ = −βu2 + βu + c1 ez/a1 , (28)

where β = 2vτq−p

2(1−v2τ)
, with the general solution given as

u = −
√−c1

β
ez/2a1

J1+βa1(ξ(z)) + c2N1+βa1(ξ(z))

Jβa1(ξ(z)) + c2Nβa1(ξ(z))
+ 1,

ξ(z) = 2a1

√
−c1β ez/2a1 ,

(29)

where c2 is an integration constant.
Once again we take c2 = 0 to discard the Neumann Nn functions. The asymptotic analysis

of this solution provides u → 1 as z → −∞.
Plots of solution (29), given in figures 3 and 4, show breakdown and blowup for some

finite values of z.
Some particular solutions of the time-delayed Burgers–Fisher equation can also be

obtained from the Riccati equation (28). If we set c1 = 0, then we get

u̇ = −βu2 + βu. (30)

Integration of equation (30) provides the following RR solution [14] of equation (25):

uλ = [1 + e−β(z−z0)]−1 +
eβ(z−z0)

[1 + eβ(z−z0)][λ(1 + eβ(z−z0)) − 1]
, (31)

where z0 is an integration constant.
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-1 1 2 3
z

-1

1

2

3

4

u z

Figure 3. Plot of solution (29) for τ = 2, p = 1, q = 5, c1 = 1 and c2 = 0, within the interval
zε(−1.8, 3.2). The solution tends to 1 as z → −∞.
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Figure 4. Plot of solution (29) within zε(−8, 1.5). Parameter values as in figure 3.

3.1. The Burgers–Fisher equation

Equation (25) can be reduced to the Burgers–Fisher equation by setting τ = 0,

ut = uxx − puux + qu(1 − u). (32)

The transformation to the traveling variable z = x − vt yields the equation

ü + (v − pu)u̇ + qu(1 − u) = 0, (33)

which admits the factorization(
D +

2q

p

) (
D +

p

2
(1 − u)

)
u = 0. (34)

The factorizing functions are f1 = −p

2 (1−u) and f2 = − 2q

p
, and the velocity of the traveling

wave is v = p2+4q

2p
. The substitution of f1 and f2 into equation (12) leads to the Riccati

equation

u̇ = p

2
u2 − p

2
u + c1 e− 2q

p
z
, (35)

with the general solution

u = −
√

2c1

p
e− q

p
z
J

1− p2

4q

(ξ(z)) + c2N1− p2

4q

(ξ(z))

J− p2

4q

(ξ(z)) + c2N− p2

4q

(ξ(z))
, ξ(z) =

√
2c1

2q
p3/2 e− q

p
z
, (36)

and c2 is an integration constant.

6



J. Phys. A: Math. Theor. 42 (2009) 035204 O Cornejo-Pérez

The RR solution of equation (32) is given by

uλ = [1 + ep(z−z0)/2]−1 +
e−p(z−z0)/2

[1 + e−p(z−z0)/2][λ(1 + e−p(z−z0)/2) − 1]
, (37)

where z0 is an integration constant.

4. The nonlinear dispersive–dissipative equation

In this section, by the same procedure, several traveling wave solutions are obtained for
the dispersive–dissipative equation as studied by Kakutani and Kawahara [15]. It has been
derived by analyzing a two-fluid plasma model consisting of cold ions and warm electrons
and describes weak nonlinear ion-acoustic waves. The equation is given as follows

ut + uux + buxxx − a(ut + muux)x = 0, (38)

where a, b and m are real constant parameters; or in the traveling frame
...
u +a(v − mu)ü − amu̇2 + (u − v)u̇ = 0. (39)

Equation (39) is integrated once to obtain

bü + a(v − mu)u̇ + 1
2u2 − vu + k = 0, (40)

where k is an integration constant. Equation (40) can be factorized in the form (2) only if k = 0,
which is a very restrictive condition. To avoid this constraint we apply the transformation
w(z) = u(z) + δ, where δ is a constant to be determined. Equation (40) can now be rewritten
as

ẅ +
a

b
[(v + mδ) − mw]ẇ +

1

2b
[w2 − 2(v + δ)w] = 0, (41)

where

δ = −v ±
√

v2 − 2k, (42)

and k � v2/2 restricts δ to be a real constant. The factorizing functions are chosen as
f1 = a1

2b
[w − 2(v + δ)] and f2 = a−1

1 . Hence, equation (3) provides a1 = am, and the velocity
of the traveling wave v = b

(am)2−a2m
. Equation (41) admits the factorization(

D − 1

am

)(
D − am

2b
[w − 2(v + δ)]

)
w = 0. (43)

The substitution of the factorizing functions into equation (12) gives the following Riccati
equation,

ẇ = am

2b
w2 − am

b
(v + δ)w + c1 ez/am, (44)

or

ẇ = am

2b
w2 ± am

b

√
v2 − 2kw + c1 ez/am, (45)

whose general solution is given as

w± = b

(am)2
ξ(z)

J1∓η(ξ(z)) + c2N1∓η(ξ(z))

J∓η(ξ(z)) + c2N∓η(ξ(z))
,

ξ(z) =
√

2c1

b
(am)3/2 ez/2am, (46)

η = b
√

v2 − 2k

(am)2
,
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Figure 5. Plot of solution (47) u+ for a = 1, b = 1,m = 1.05, k = 0, c1 = 1 and c2 = 0, within
the interval zε(−2, 6.4). The solution goes to a constant value 2v as z → −∞.
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Figure 6. Plot of solution (47) u− for a = 1, b = 1,m = 1.05, k = 0, c1 = 1 and c2 = 0, within
the interval zε(0, 6.5). The solution goes to zero as z → −∞.

and c2 is an integration constant. Returning to the original function u(z) = w(z) − δ by
combining equations (46) and (42), we get the following special solution of equation (38):

u± = b

(am)2
ξ(z)

J1∓η(ξ(z)) + c2N1∓η(ξ(z))

J∓η(ξ(z)) + c2N∓η(ξ(z))
+ v ±

√
v2 − 2k. (47)

The solution (47) is a more general result than that obtained through other means by Isidore in
[26]. It is also a different result from those obtained by Wang and Li [13]. They obtained the
parametric form solution of equation (38) by means of an Abel equation of the second kind
and one particular solution from the compatible first-order ODE (5).

Due to the fact that the Neumann Nn function is singular if the argument is zero we can
take c2 = 0 in equation (47). The asymptotic behavior for this solution is u → v ± √

v2 − 2k

as z → −∞.
Plots of equation (47) are displayed in figures 5 and 6. These solutions show breakdown

and blowup for some finite values of z.
Several special cases of equation (45) provide particular solutions of equation (38):

(1) If we set k = v2/2, then we obtain the following particular solution:

u = b

(am)2
ξ(z)

J1(ξ(z)) + c2N1(ξ(z))

J0(ξ(z)) + c2N0(ξ(z))
+ v. (48)

8
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(2) If we choose c1 = 0, then the integration of the resulting Riccati equation provides the
following set of RR solutions:

uλ1,2 = u1 +
2r

−1 ± e− amr
b

(z−z0)
+ v +

√
v2 − 2k (49)

and

uλ3,4 = u1 +
2r

1 ± e
amr
b

(z−z0)
+ v −

√
v2 − 2k, (50)

where

u1 = 2r e
amr
b

(z−z0)

2rλ(∓1 + e
amr
b

(z−z0))2 + (∓1 + e
amr
b

(z−z0))
,

and z0 is an integration constant.
(3) Choosing c1 = 0 and k = v2/2 leads to the following RR solution:

uλ = − 2b

am(z − z0)
+

2b

2bλ(z − z0)2 + am(z − z0)
. (51)

5. Conclusion

This work presents a series of novel special traveling wave solutions of the following nonlinear
PDEs: the convective Fisher equation, the time-delayed Burgers–Fisher equation, the Burgers–
Fisher equation and a dispersive–dissipative equation [15]. These solutions have been found
through the extended factorization method proposed by Wang and Li [13]. In addition, some
novel particular solutions of the dispersive–dissipative equation are provided. The type of
factorized equations studied here shares the same kind of factorizing function f2 ≡ const.
If the factorizing function f1 is a linear function of the dependent variable u, then equation
(12) turns out to be a Riccati equation whose general solution is in terms of Bessel and
Neumann functions. However, it is worth mentioning that if the factorizing function f1 is a
quadratic function of u, then equation (12) will become an Abel equation of the first kind.
The special traveling wave solutions obtained here by the extended factorization technique
show a wave breaking phenomenon [20–23] that deserves future work. The factorization
scheme used to find the special solutions of the PDEs can also be applied to the study of
other important nonlinear equations, for instance, the generalized Burgers–Fisher equation,
the time-delayed convective Fisher equation [14], and in the context of ODEs, the Duffing—
van der Pol oscillator equation [27], and the equation for the Hubble function H which arises
in the study of causal bulk viscous cosmological models [28].
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